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 Coursework will be weighted as follows:

Assignments 5%

Quizzes and In-Class Exercises 10%

Class Discussion/Participation 10%

Midterm Examination
• 6 Aug 2013 TIME 13:30 - 16:30

35%

Final Examination (comprehensive)
•15 Oct 2013 TIME 13:30 - 16:30

40%
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Reference for this chapter

3

 Elements of Information 

Theory 

 By  Thomas M. Cover and 

Joy A. Thomas

 2nd Edition (Wiley)

 Chapters 2, 7, and 8

 1st Edition available at SIIT 

library: Q360 C68 1991



Channel Model
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 The model considered here is a simplified version of what we have seen earlier in the 
course.
 In the next chapter, we will present how this model can be derived from the digital 

modulator-demodulator over continuous-time AWGN noise one.

 The channel input is denoted by a random variable X.
 The pmf pX(x) is usually denoted by simply p(x) and usually expressed in the form of a row 

vector  𝑝 or  .

 The support 𝑆𝑋 is often denoted by .

 The channel output is denoted by a random variable Y.
 The pmf pY(y) is usually denoted by simply q(y) and usually expressed in the form of a row 

vector  𝑞.

 The support 𝑆𝑌 is often denoted by .

 The channel corrupts X in such a way that when the input is 𝑋 = 𝑥, the output 𝑌 is 
randomly selected from the conditional pmf 𝑝𝑌|𝑋 𝑦|𝑥 . 

 This conditional pmf 𝑝𝑌|𝑋 𝑦|𝑥 is usually denoted by Q 𝑦|𝑥 and usually expressed in 
the form of a probability transition matrix Q.

 𝑞 = 𝑝Q

 Q y xX Y



“Information” Channel Capacity
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 Consider a (discrete memoryless) channel whose is Q(y|x).

 The “information” channel capacity of this channel is defined as

where the maximum is taken over all possible input pmf’s pX(x).

 Remarks:

 In the next chapter, we shall define an “operational” definition of 

channel capacity as the highest rate in bits per channel use at which 

information can be sent with arbitrarily low probability of error. 

 Shannon’s theorem establishes that the information channel capacity is 

equal to the operational channel capacity. 

 Thus, we may drop the word information in most discussions of 

channel capacity.

 
   max ; max , ,

Xp x p
C I X Y I p Q 



Binary Symmetric Channel (BSC)
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Binary Asymmetric Channel
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Iterative Calculation of C
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 In general, there is no closed-form solution for capacity.

 The maximum can be found by standard nonlinear optimization 
techniques.

 A famous iterative algorithm, called the Blahut–Arimoto algorithm,
was developed by Arimoto and Blahut. 

 Start with a guess input pmf p0(x).

 For r > 0, construct pr(x) according to the following iterative prescription:



Berger plaque
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Richard Blahut
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 Former chair of the 

Electrical and 

Computer 

Engineering 

Department at the 

University of Illinois 

at Urbana-Champaign

 Best known for 

Blahut–Arimoto

algorithm 

(Iterative 

Calculation of C)



Raymond Yeung
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 BS, MEng and PhD 

degrees in electrical 

engineering from 

Cornell University 

in 1984, 1985, and 

1988, respectively.


