Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Information-Theoretic Quantities

Office Hours: Rangsit Library: Tuesday 16:20-17:20 BKD3601-7: Thursday 16:00-17:00

1

Grading System

• Coursework will be weighted as follows:

Assignments	5%
Quizzes and In-Class Exercises	10%
Class Discussion/Participation	10%
Midterm Examination • 6 Aug 2013 TIME 13:30 - 16:30	35%
Final Examination (comprehensive) •15 Oct 2013 TIME 13:30 - 16:30	40%

Reference for this chapter

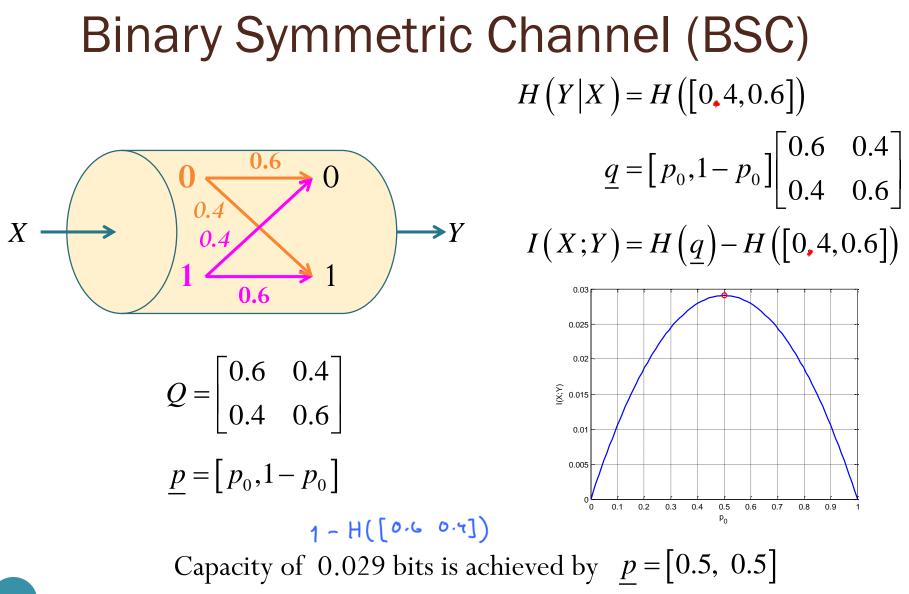
- Elements of Information Theory
- By Thomas M. Cover and Joy A. Thomas
- 2nd Edition (Wiley)
- Chapters 2, 7, and 8
- 1st Edition available at SIIT library: Q360 C68 1991

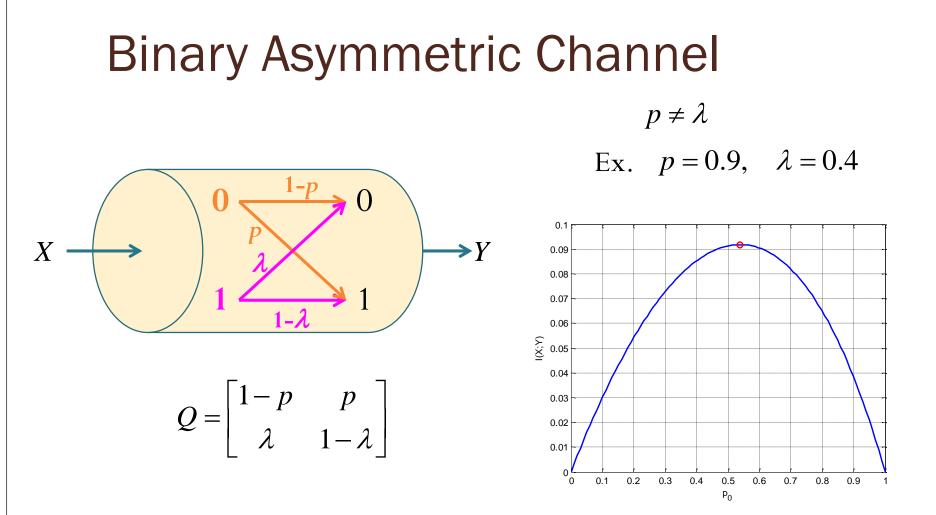
ELEMENTS OF INFORMATION THEORY SECOND EDITION

THOMAS M. COVER JOY A. THOMAS

Channel Model

- The model considered here is a simplified version of what we have seen earlier in the course.
 - In the next chapter, we will present how this model can be derived from the digital modulator-demodulator over continuous-time AWGN noise one.
- The channel input is denoted by a random variable *X*.
 - The pmf $p_X(x)$ is usually denoted by simply p(x) and usually expressed in the form of a row vector p or $\underline{\pi}$.
 - The support S_X is often denoted by \mathcal{X} .
- The channel output is denoted by a random variable *Y*.
 - The pmf $p_{Y}(y)$ is usually denoted by simply q(y) and usually expressed in the form of a row vector \mathbf{q} .
 - The support S_Y is often denoted by \mathcal{Y} .
- The channel corrupts *X* in such a way that when the input is X = x, the output *Y* is randomly selected from the conditional pmf $p_{Y|X}(y|x)$.
 - This conditional pmf $p_{Y|X}(y|x)$ is usually denoted by Q(y|x) and usually expressed in the form of a **probability transition matrix Q**.
 - $\underline{q} = \underline{p}Q$


$$X \longrightarrow Q(y|x) \longrightarrow Y$$


"Information" Channel Capacity

- Consider a (discrete memoryless) channel whose is Q(y|x).
- The "information" channel capacity of this channel is defined as

 $C = \max_{p_X(x)} I(X;Y) = \max_{\underline{p}} I(\underline{p},\underline{Q}),$ where the maximum is taken over all possible input pmf's $p_X(x)$.

- Remarks: (2) Q is given. (connot be optimize)
 - In the next chapter, we shall define an **"operational"** definition of channel capacity as the highest rate in bits per channel use at which information can be sent with arbitrarily low probability of error.
 - Shannon's theorem establishes that the information channel capacity is equal to the operational channel capacity.
 - Thus, we may drop the word information in most discussions of channel capacity.

Capacity of 0.0918 bits is achieved by p = [0.5380, 0.4620]

Iterative Calculation of C

- In general, there is no closed-form solution for capacity.
- The maximum can be found by standard nonlinear optimization techniques.
- A famous iterative algorithm, called the **Blahut–Arimoto algorithm**, was developed by Arimoto and Blahut.
 - Start with a guess input pmf $p_0(x)$.
 - For r > 0, construct $p_r(x)$ according to the following iterative prescription:

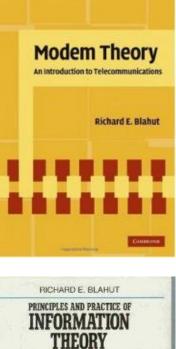
$$p_{r+1}(x) = \frac{p_r(x) c_r(x)}{\sum_x p_r(x) c_r(x)},$$

where
$$\log c_r(x) = \sum_y Q(y|x) \log \frac{Q(y|x)}{q_r(y)}$$

and
$$q_r(y) = \sum_x p_r(x) Q(y|x).$$

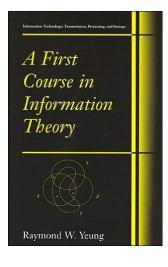
Then,
$$\log \left(\sum_x p_r(x) c_r(x)\right) \le C \le \log \left(\max_x c_r(x)\right).$$

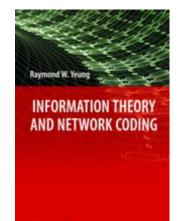
8


Berger plaque

Richard Blahut

- Former chair of the Electrical and Computer
 - Engineering Department at the University of Illinois at Urbana-Champaign
- Best known for
 Blahut–Arimoto
 algorithm
 (Iterative
 Calculation of C)





Raymond Yeung

 BS, MEng and PhD degrees in electrical engineering from Cornell University in 1984, 1985, and 1988, respectively.

Springer